Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem

نویسنده

  • Timothy Bretl
چکیده

This paper addresses the problem of planning the motion of a multilimbed robot in order to “free-climb” vertical rock surfaces. Freeclimbing only relies on frictional contact with the surfaces rather than on special fixtures or tools like pitons. It requires strength, but more importantly it requires deliberate reasoning: not only must the robot decide how to adjust its posture to reach the next feature without falling, it must plan an entire sequence of steps, where each one might have future consequences. In this paper, this process of reasoning is broken into manageable pieces by decomposing a freeclimbing robot’s configuration space into manifolds associated with each state of contact between the robot and its environment. A multistep planning framework is presented that decides which manifolds to explore by generating a candidate sequence of hand and foot placements first. A one-step planning algorithm is then described that explores individual manifolds quickly. This algorithm extends the probabilistic roadmap approach to better handle the interaction between static equilibrium and the topology of closed kinematic chains. It is assumed throughout this paper that a set of potential contact points has been presurveyed. Validation with real hardware was done with a four-limbed robot called LEMUR (developed by the Mechanical and Robotic Technologies Group at NASA–JPL). Using the planner presented in this paper, LEMUR free-climbed an indoor, near-vertical surface covered with artificial rock features. KEYWORDS—free-climbing, climbing robots, motion planning, equilibrium constraints, closed kinematic chains, probabilistic roadmaps The International Journal of Robotics Research Vol. 25, No. 4, April 2006, pp. 317-342 DOI: 10.1177/0278364906063979 ©2006 SAGE Publications

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration

This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...

متن کامل

Multi-Step Motion Planning for Free-Climbing Robots

This paper studies non-gaited, multi-step motion planning, to enable limbed robots to free-climb vertical rock. The application of a multi-step planner to a real free-climbing robot is described. This planner processes each of the many underlying one-step motion queries using an incremental, sample-based technique. However, experimental results point toward a better approach, incorporating the ...

متن کامل

Climbing Robots in Natural Terrain

This paper presents a general framework for planning the quasi-static motion of climbing robots. The framework is instantiated to compute climbing motions of a three-limbed robot in vertical natural terrain. An example resulting path through a large simulated environment is presented. The planning problem is one of five fundamental challenges to the development of real robotic systems able to c...

متن کامل

مسیریابی حرکت روبات‌های ماشین‌واره با روش پیشروی سریع

The Robot Motion Planning (RMP) problem deals with finding a collision-free start-to-goal path for a robot navigating among workspace obstacles. Such a problem is also encountered in path planning of intelligent vehicles and Automatic Guided Vehicles (AGVs). In terms of kinematic constraints, the RMP problem can be categorized into two groups of Holonomic and Nonholonomic problems. In the first...

متن کامل

Motion planning for a three-limbed climbing robot in vertical natural terrain

This paper presents a general framework for planning the quasi-static motion of a three-limbed climbing robot in vertical natural terrain. The problem is to generate a sequence of, continuous one-step motions between consecutive holds that will allow the robot to reach a particular goal hold. A derailed algorithm is presented to compute a one-step motion considering the equilibrium constraint o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2006